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Introduction
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Inverse Problems

Inverse problem:
Au =T,

- A: U — F is the forward operator (linear in this talk),

- f € U exact (unattainable) data,

- * noisy measurement with amount of noise characterised by
0> 0.
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Variational Regularisation

Variational regularisation:

1
in —H(Au | f°
min —H(Au | 1) + T (u),
- H(- | ) is the fidelity function that models the noise (e.g.,
Kullback-Leibler divergence, LP-norm, Wasserstein distance),
- J(-) is the regularisation term (e.g., Total Variation, ¢'-norm),
- o is the regularisation parameter.
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Imperfect Forward Operators

Forward operator A: U — F often
- is not perfectly known (errors in geometry, coefficients of a PDE,
convolution kernel), or

- can only be evaluated approximately (simplified models, discretisation
errors).

Regularisation under operator errors:

- Goncharskii, Leonov, Yagola (1973). A generalized discrepancy principle;

- Hofmann (1986). Optimization aspects of the generalized discrepancy principle in regularization;

- Neubauer, Scherzer (1990). Finite-dimensional approximation of Tikhonov regularized solutions of nonlin. ill-posed prob.;
- Péschl, Resmerita, Scherzer (2010). Discretization of variational regularization in Banach spaces;

- Bleyer, Ramlau (2013). A double regularization approach for inverse problems with noisy data and inexact operator;

- YK, Yagola (2013). Making use of a partial order in solving inverse problems;

- YK (2014). Making use of a partial order in solving inverse problems: Il;

- YK, Lellmann (2018). Image reconstruction with imperfect forward models and applications in deblurring;

- Burger, YK, Rasch (2019). Convergence rates and structure of solutions of inv. prob. with imperfect forward models;

- Dong et al. (2019). Fixing nonconvergence of algebraic iterative reconstruction with an unmatched backprojector;

Bayesian approximation error modelling:

- Kaipio, Somersalo (2005). Statistical and computational inverse problems;

- Arridge et al. (2006). Approximation errors and model reduction with an application in optical diffusion tomography;

- Hansen et al. (2014). Accounting for imperfect forw. model. in geophys. inv. prob. - exemplified for crosshole tomography;

- Calvetti et al. (2018). Iterative updating of model error for Bayesian inversion;

- Rimpiléinen et al. (2019). Improved EEG source localization with Bayes. uncert. modelling of unknown skull conductivity;

- Riis, Dong, Hansen (2020). Computed tomography reconstr. with uncert. view angles by iter. updated model discrepancy.4, 19



Learned Forward Operators

Forward operator (or a correction to it) is learned from training pairs

(', 1, st A =f.

Learned forward operators:

- Aspri, YK, Scherzer (2019). Data-driven regularisation by projection;

- Bubba et al. (2019). Learning the invisible: A hybrid deep learning-shearlet framework for limited angle computed
tomography;

- Schwab, Antholzer, Haltmeier (2019). Deep null space learning for inverse problems: convergence analysis and rates;
- Boink, Brune (2019). Learned SVD: solving inverse problems via hybrid autoencoding;

- Lunz et al. (2020). On learned operator correction;

- Nelsen, Stuart (2020). The random feature model for input-output maps between Banach spaces.
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Contribution: combining general fidelities and operator errors

Variational regularisation with exact operator
1
in—H(Au | f° :
umellr}a’H( ul )+ J(u)

Modelling operator error using partial order in a Banach lattice
A <A< AY (inasense made precise later).

Proposed: variational regularisation with interval operator

1
min —H(v | )+ J(u) st Au<rv<rAu.
uel «
veF
- Convergence rates for a priori choices of a (depending on ¢ and
1A% — Alll);
- Convergence rates for a posteriori choices of « (discrepancy principle;
depending on 4, f*, A’ and AY).

Bungert, Burger, YK, Schénlieb (2020). Variational regularisation for inverse problems with imperfect forward operators and
general noise models. arXiv:2005.14131
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Convergence Analysis
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Banach Lattices

» Vector space X" with partial order < called an ordered vector
space if

X<y = x+z<y+z vV x,y,ze X,
X<y = A<\ Vx,yeXand A € Ry.

8/19



Banach Lattices

» Vector space X" with partial order < called an ordered vector
space if

X<y = x+z<y+z vV x,y,ze X,
X<y = A<\ Vx,yeXand A € Ry.

» A vector lattice (or a Riesz space) is an ordered vector space
X with well defined suprema and infima

vx,yeX dxvyeX xANyedX;
XVO0=xy, (—X)+=x_, X=Xx—Xx_, [|x=x++x_.

8/19



Banach Lattices

» Vector space X" with partial order < called an ordered vector
space if
X<y = x+z<y+z vV x,y,ze X,
X<y = A<\ Vx,yeXand A € Ry.

» A vector lattice (or a Riesz space) is an ordered vector space
X with well defined suprema and infima

vx,yeX dxvyeX xANyedX;
XVO0=xy, (—X)+=x_, X=Xx—Xx_, [|x=x++x_.
» A Banach lattice is a vector lattice X with a monotone norm, i.e.

v,yed x| =yl = x| =yl

8/19



Banach Lattices

v

Vector space X’ with partial order < called an ordered vector
space if
Yy = x+zgy+z V Xx,y,ze X,
<y = A<\ Vx,yeXand A e R,.

v

A vector lattice (or a Riesz space) is an ordered vector space
X with well defined suprema and infima

vx,yeX dxvyeX xANyedX;
XVO0=xy, (—X)+=x_, X=Xx—Xx_, [|x=x++x_.

A Banach lattice is a vector lattice X with a monotone norm, i.e.

v

v,yed x| =yl = x| =yl

v

Partial order for linear operators A, B: X — ) is defined as
A>B if Y x>0inX = Ax>Bxin).
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Convergence of the Data and the Operator

We consider sequences

Al AL AL<SA<SAY vn,
|AY — ALl <npp— 0 asn— oo,

fr, On: H(F| f2) < 0p VN,

op— 0 asn— oo,

Qn: an— 0 asn— oo.

Sequence of corresponding primal solutions

(Un, Vn)7 n= 1’...700.

9/19



General Estimate

Assumption (Source condition)

There exists wt € F* s.t.

Awt e 07 (uh).

Theorem (Bungert, Burger, YK, Schoénlieb’20)

Under standard assumptions the following estimate holds for the
Bregann distance D (up, u}) between the approximate solution up

and the J -minimising solution u}

) -
D7 (up, uf) < air’] + —[’H (anw! | £,) = (anw’, ] + Cnp.



o-divergences

Definition
Let ¢: (0,00) — R be convex and ¢(1) = 0. For p, v € P(Q2) with
p < v the p-divergence is defined as follows

aip10) = [ o (L) v

We further assume that ¢*(x) = x + r(x), where ¢* is the convex
conjugate and r(x)/x — 0 as x — 0.

- Kullback-Leibler divergence: ¢(x) = xlog(x) + x — 1;
- x2 divergence: p(x) = (x — 1);

- Squared Hellinger distance: ¢(x) = (vx — 1);

- Total variation: ¢(x) = |x — 1.
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o-divergences

Theorem (Bungert, Burger, YK, Schonlieb’20)

Under standard assumptions the following convergence rate holds

1)
Dy(up,u;) =0 (a—n i e + 77n) :

n Qn

For an optimal choice of o we get
- Kullback-Leibler divergence, x? divergence, Squared Hellinger distance:

Dy (un,uy) = O ((6n)F +n)
- Total variation:

D(un,u;) = O (6, +nn) (exact penalisation).
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Strongly Coercive Fidelities

Theorem (Bungert, Burger, YK, Schénlieb’20)

Suppose that the fidelity function H satisfies
1
SV =l <H(v [ 1)

forallv,f € F, where A > 1. Then under standard assumptions and
for an optimal choice of « the following rate holds

1
Ds(unul) = O (69 +nn> |

- Powers of norms;
- Wasserstein distances (coercive in the Kantorovich-Rubinstein norm).
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Mixed Noise

Sum of fidelities:

H(v | ) =Hi(v | )+ Ha(v | ),
= Dy7(un,u;) = O((Ri(-6n) O Ro(- 6n)) (an) + 1) ,

where Ry (-, dp) are individual rates.

- Hintermiiller, Langer (2013). Subspace correction methods for a class of nonsmooth and nonadditive convex variational

problems with mixed L' /12 data-fidelity in image processing;
- Yue et al. (2014). A locally adaptive L1-L2 norm for multiframe super-resolution of images with mixed noise and outliers;
- Langer (2017). Automated parameter selection in the-TV model for removing Gaussian plus impulse noise.

Infimal convolution of fidelities:
H(v [ ) = (Ha(- [ 0)OHa(- | F))(v),
= Dy (Un, ul;) = O(Ri(an,dn) + Ra(cn. ) + 1n) .

- Calatroni, De Los Reyes, Schénlieb (2017). Infimal convolution of data discrepancies for mixed noise removal.
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Discrepancy Principle
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Discrepancy Principle

Discrepancy principle for for exact operators
an = sup{a > 0: ||Aud" — fo||> < 705}

- Morozov (1966). On the solution of functional equations by the method of regularisation;
- Bonesky (2008). Morozov's discrepancy principle and Tikhonov-type functionals;

- Anzengruber, Ramlau (2009). Morozov’s discrepancy principle for Tikhonov-type functionals with nonlinear operators;
- Sixou, Hohweiller, Ducros (2018). Morozov principle for Kullback-Leibler residual term and Poisson noise.

Generalisation to errors in the operator (in the Hilbert space setting)
an = sup{a > 0: [|Aug" — fp]|? = (v/dn + hnllug[)?}.

- Goncharskii, Leonov, Yagola (1973). A generalized discrepancy principle;
- Hofmann (1986). Optimization aspects of the generalized discrepancy principle in regularization;
- Lu et al. (2010). On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales.

We propose
ap =sup{a > 0: H(vy | fn) < 70n},

where (uy, v') solve

rDi‘? é?—t(v | )+ T (u) st Alu<v <Al
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Discrepancy Principle

Theorem (Bungert, Burger, YK, Schénlieb’20)

Under standard assumptions, for strongly coercive fidelities
1
Dy(usr, ) = O (3 +).

i.e. we recover optimal rates. If the p-divergence satisfies Pinsker’s
inequality, we also recover optimal rates.
E.g., for the Kullback-Leibler divergence Pinsker’s inequality says

If = foll < \/2H(F | f2) = O(/6n),
hence
Dj(unnauj \/a+77n



Conclusions

» Convergence rates for variational regularization in Banach
lattices for problems with imperfect forward operators and
general fidelity functions:

norm-type fidelities;

Wasserstein distances;

p-divergences, e.g. Kullback-Leibler;

mixed noise;

» recover optimal rates for problems with exact operator;

» extend the discrepancy principle to a combination of an inexact
operator and a general fidelity;

» also recover optimal rates;

» a general and versatile approach to problems with complicated
measurement noise and inexact modelling.
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Bungert, Burger, YK, Schonlieb (2020). Variational regularisation for inverse problems with imperfect forward operators and
general noise models. arXiv:2005.14131
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