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Inverse Problems

Inverse problem:
Au = f̄ ,

- A : U → F is the forward operator (linear in this talk),
- f̄ ∈ U exact (unattainable) data,
- f δ noisy measurement with amount of noise characterised by
δ > 0.
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Variational Regularisation

Variational regularisation:

min
u∈U

1
α
H(Au | f δ) + J (u),

- H(· | f δ) is the fidelity function that models the noise (e.g.,
Kullback-Leibler divergence, Lp-norm, Wasserstein distance),
- J (·) is the regularisation term (e.g., Total Variation, `1-norm),
- α is the regularisation parameter.
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Imperfect Forward Operators

Forward operator A : U → F often
- is not perfectly known (errors in geometry, coefficients of a PDE,
convolution kernel), or
- can only be evaluated approximately (simplified models, discretisation
errors).

Regularisation under operator errors:
- Goncharskii, Leonov, Yagola (1973). A generalized discrepancy principle;
- Hofmann (1986). Optimization aspects of the generalized discrepancy principle in regularization;
- Neubauer, Scherzer (1990). Finite-dimensional approximation of Tikhonov regularized solutions of nonlin. ill-posed prob.;
- Pöschl, Resmerita, Scherzer (2010). Discretization of variational regularization in Banach spaces;
- Bleyer, Ramlau (2013). A double regularization approach for inverse problems with noisy data and inexact operator;
- YK, Yagola (2013). Making use of a partial order in solving inverse problems;
- YK (2014). Making use of a partial order in solving inverse problems: II;
- YK, Lellmann (2018). Image reconstruction with imperfect forward models and applications in deblurring;
- Burger, YK, Rasch (2019). Convergence rates and structure of solutions of inv. prob. with imperfect forward models;
- Dong et al. (2019). Fixing nonconvergence of algebraic iterative reconstruction with an unmatched backprojector;

Bayesian approximation error modelling:
- Kaipio, Somersalo (2005). Statistical and computational inverse problems;
- Arridge et al. (2006). Approximation errors and model reduction with an application in optical diffusion tomography;
- Hansen et al. (2014). Accounting for imperfect forw. model. in geophys. inv. prob. - exemplified for crosshole tomography;
- Calvetti et al. (2018). Iterative updating of model error for Bayesian inversion;
- Rimpiläinen et al. (2019). Improved EEG source localization with Bayes. uncert. modelling of unknown skull conductivity;
- Riis, Dong, Hansen (2020). Computed tomography reconstr. with uncert. view angles by iter. updated model discrepancy. 4 / 19



Learned Forward Operators

Forward operator (or a correction to it) is learned from training pairs

(ui , f i )n
i=1 s.t. Aui = f i .

Learned forward operators:
- Aspri, YK, Scherzer (2019). Data-driven regularisation by projection;
- Bubba et al. (2019). Learning the invisible: A hybrid deep learning-shearlet framework for limited angle computed
tomography;
- Schwab, Antholzer, Haltmeier (2019). Deep null space learning for inverse problems: convergence analysis and rates;
- Boink, Brune (2019). Learned SVD: solving inverse problems via hybrid autoencoding;
- Lunz et al. (2020). On learned operator correction;
- Nelsen, Stuart (2020). The random feature model for input-output maps between Banach spaces.
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Contribution: combining general fidelities and operator errors

Variational regularisation with exact operator

min
u∈U

1
α
H(Au | f δ) + J (u).

Modelling operator error using partial order in a Banach lattice

Al 6 A 6 Au (in a sense made precise later).

Proposed: variational regularisation with interval operator

min
u∈U
v∈F

1
α
H(v | f δ) + J (u) s.t. Alu 6F v 6F Auu.

- Convergence rates for a priori choices of α (depending on δ and
‖Au − Al‖);
- Convergence rates for a posteriori choices of α (discrepancy principle;
depending on δ, f δ, Al and Au).
Bungert, Burger, YK, Schönlieb (2020). Variational regularisation for inverse problems with imperfect forward operators and
general noise models. arXiv:2005.14131
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Banach Lattices

I Vector space X with partial order 6 called an ordered vector
space if

x 6 y =⇒ x + z 6 y + z ∀ x , y , z ∈ X ,
x 6 y =⇒ λx 6 λy ∀ x , y ∈ X and λ ∈ R+.

I A vector lattice (or a Riesz space) is an ordered vector space
X with well defined suprema and infima

∀x , y ∈ X ∃ x ∨ y ∈ X , x ∧ y ∈ X ;

x ∨ 0 = x+, (−x)+ = x−, x = x+ − x−, |x | = x+ + x−.

I A Banach lattice is a vector lattice X with a monotone norm, i.e.

∀x , y ∈ X |x | > |y | =⇒ ‖x‖ > ‖y‖.

I Partial order for linear operators A,B : X → Y is defined as

A > B if ∀x > 0 in X =⇒ Ax > Bx in Y.
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Convergence of the Data and the Operator

We consider sequences

Al
n,A

u
n : Al

n 6 A 6 Au
n ∀n,

‖Au
n − Al

n‖ 6 ηn → 0 as n→∞,
fn, δn : H(f̄ | fn) 6 δn ∀n,

δn → 0 as n→∞,
αn : αn → 0 as n→∞.

Sequence of corresponding primal solutions

(un, vn), n = 1, ...,∞.
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General Estimate

Assumption (Source condition)

There exists ω† ∈ F ∗ s.t.

A∗ω† ∈ ∂J (u†J ).

Theorem (Bungert, Burger, YK, Schönlieb’20)

Under standard assumptions the following estimate holds for the
Bregann distance DJ (un,u

†
J ) between the approximate solution un

and the J -minimising solution u†J

DJ (un,u
†
J ) 6

δn

αn
+

1
αn

[H∗(αnω
† | fn)− 〈αnω

†, f̄ 〉] + Cηn.
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ϕ-divergences

Definition
Let ϕ : (0,∞)→ R+ be convex and ϕ(1) = 0. For ρ, ν ∈ P(Ω) with
ρ� ν the ϕ-divergence is defined as follows

dϕ(ρ | ν) :=

∫
Ω
ϕ

(
dρ

dν

)
dν.

We further assume that ϕ∗(x) = x + r(x), where ϕ∗ is the convex
conjugate and r(x)/x → 0 as x → 0.

- Kullback-Leibler divergence: ϕ(x) = x log(x) + x − 1;
- χ2 divergence: ϕ(x) = (x − 1)2;
- Squared Hellinger distance: ϕ(x) = (

√
x − 1)2;

- Total variation: ϕ(x) = |x − 1|.
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ϕ-divergences

Theorem (Bungert, Burger, YK, Schönlieb’20)

Under standard assumptions the following convergence rate holds

DJ (un,u
†
J ) = O

(
δn

αn
+

r(αn)

αn
+ ηn

)
.

For an optimal choice of α we get
- Kullback-Leibler divergence, χ2 divergence, Squared Hellinger distance:

DJ (un,u
†
J ) = O

(
(δn)

1
2 + ηn

)
;

- Total variation:

DJ (un,u
†
J ) = O (δn + ηn) (exact penalisation).
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Strongly Coercive Fidelities

Theorem (Bungert, Burger, YK, Schönlieb’20)

Suppose that the fidelity function H satisfies

1
λ
‖v − f‖λF 6 H(v | f )

for all v , f ∈ F, where λ > 1. Then under standard assumptions and
for an optimal choice of α the following rate holds

DJ (un,u
†
J ) = O

(
δ

1
λ
n + ηn

)
.

- Powers of norms;
- Wasserstein distances (coercive in the Kantorovich-Rubinstein norm).
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Mixed Noise

Sum of fidelities:

H(v | f ) = H1(v | f ) +H2(v | f ),

=⇒ DJ (un,u
†
J ) = O ((R1(·, δn)�R2(·, δn)) (αn) + ηn) ,

where R1,2(·, δn) are individual rates.
- Hintermüller, Langer (2013). Subspace correction methods for a class of nonsmooth and nonadditive convex variational
problems with mixed L1/L2 data-fidelity in image processing;
- Yue et al. (2014). A locally adaptive L1-L2 norm for multiframe super-resolution of images with mixed noise and outliers;
- Langer (2017). Automated parameter selection in the-TV model for removing Gaussian plus impulse noise.

Infimal convolution of fidelities:

H(v | f ) = (H1(· | 0)�H2(· | f ))(v),

=⇒ DJ (un,u
†
J ) = O (R1(αn, δn) + R2(αn, δn) + ηn) .

- Calatroni, De Los Reyes, Schönlieb (2017). Infimal convolution of data discrepancies for mixed noise removal.
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Discrepancy Principle

Discrepancy principle for for exact operators

αn = sup{α > 0 : ‖Auαn
n − fn‖2 6 τδn}.

- Morozov (1966). On the solution of functional equations by the method of regularisation;
- Bonesky (2008). Morozov’s discrepancy principle and Tikhonov-type functionals;
- Anzengruber, Ramlau (2009). Morozov’s discrepancy principle for Tikhonov-type functionals with nonlinear operators;
- Sixou, Hohweiller, Ducros (2018). Morozov principle for Kullback-Leibler residual term and Poisson noise.

Generalisation to errors in the operator (in the Hilbert space setting)

αn = sup{α > 0 : ‖Auαn
n − fn‖2 = (

√
δn + hn‖uαn

n ‖)2}.
- Goncharskii, Leonov, Yagola (1973). A generalized discrepancy principle;
- Hofmann (1986). Optimization aspects of the generalized discrepancy principle in regularization;
- Lu et al. (2010). On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales.

We propose

αn = sup{α > 0 : H(vαn | fn) 6 τδn},
where (uαn , vαn ) solve

min
u,v

1
α
H(v | f δn ) + J (u) s.t. Al

nu 6 v 6 Au
nu.
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Discrepancy Principle

Theorem (Bungert, Burger, YK, Schönlieb’20)

Under standard assumptions, for strongly coercive fidelities

DJ (uαn
n ,u†J ) = O

(
δ

1
λ
n + ηn

)
,

i.e. we recover optimal rates. If the ϕ-divergence satisfies Pinsker’s
inequality, we also recover optimal rates.
E.g., for the Kullback-Leibler divergence Pinsker’s inequality says

‖f̄ − fn‖ 6
√

2H(f̄ | fn) = O(
√
δn),

hence

DJ (uαn
n ,u†J ) = O(

√
δn + ηn).
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Conclusions

I Convergence rates for variational regularization in Banach
lattices for problems with imperfect forward operators and
general fidelity functions:

I norm-type fidelities;
I Wasserstein distances;
I ϕ-divergences, e.g. Kullback-Leibler;
I mixed noise;

I recover optimal rates for problems with exact operator;
I extend the discrepancy principle to a combination of an inexact

operator and a general fidelity;
I also recover optimal rates;

I a general and versatile approach to problems with complicated
measurement noise and inexact modelling.

Bungert, Burger, YK, Schönlieb (2020). Variational regularisation for inverse problems with imperfect forward operators and
general noise models. arXiv:2005.14131
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