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Introduction:
Scalar-valued neural networks and variation norm spaces

1/23



Disclaimer

New talk — new typos...

M. Thorpe



Two-layer neural networks

Two-layer neural network (NN) f: RY — R:

n
f(x)=>_ao((x,b)+¢), xeRY,
i=1
where
{b;}_, c RY are the weights;
{ci}Ly C R are the biases;
o: R — R is the activation function;

{o((x, b;) + ¢;)}iL; are the neurons, collectively called the
hidden layer of the network;

{ai}?_4 C R constitute the second (last) layer of the network;
(-,-) denote the scalar product in RY.
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Approximation by two-layer neural networks

Universal approximation theorems (Cybenko, 1989; Hornik et al.,
1989; Leshno et al., 1993)

If o is not a polynomial then any continuous function on a
compact set can be approximated uniformly by two-layer NNs.

Approximation rates

in general exponential in dimension d even for Lipschitz
functions, error O(n~9);

Monte-Carlo rates O(1/+/n) for special classes of functions
(next slide).
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Barron class

Theorem (Barron, 1993)

For any function f on a compact set B c R? let F be the magnitude of its
Fourier transform. For any constant C > 0 denote

Mc:= {f:Rd—HR s.t. /|w|F(w)dw<C}.

Then for any n € N and for any f € T ¢ there exists a two-layer NN f, with n
neurons such that e

1 = fall 28y < Ve

The weights of the second layer {a;}]_ ; can be chosen to satisfy

n
Z, lai| < 2C.
i=1

NB: ¢! bound on {a;}"_, uniform in n and depends only on C.
4/23



Remarks on the Barron class

- Barron’s result assumes that o is sigmoidal (i.e. bounded
measurable satisfying o(—o0) = 0 and o(+o00) = 1), but the
result also holds for ReLU;

- all functions in Barron class are C', hence piecewise affine
functions are not in Barron class, but they can be efficiently
approximated by NNs with ReLU activation.
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Infinitely wide two-layer neural networks

Infinitely wide two-layer neural network f: R? — R:
00 = [ altx.b) + c)dalbio), x e B
A

where A is a compact topological parameter space and a € M(A)
is a signed Radon measure. Typically A = Bga:1.

Definition (Bach, 2017)

The space of functions that can be represented as above, equipped
with the following norm

1l = inf{llall . - F(x) = /AU(<X, b) + c) da(b, c), x € RY},

is called the variation norm (F7) space.
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Variation norm spaces: also known as

Variation norm (F7) spaces
- Bach (2017). Breaking the curse of dimensionality with convex neural networks;

Barron spaces (not to be confused with Barron class)

- E, Ma, Wu (2019). Barron spaces and the compositional function spaces for neural network
models;

- E, Wojtowytsch (2020). Representation formulas and pointwise properties for Barron functions;

Radon-BV? spaces

- Ongie, Willett, Soudry, Srebro (2020). A function space view of bounded norm infinite width
RelLU nets: The multivariate case;
- Parhi, Nowak (2021). Banach space representer theorems for neural networks and ridge splines;

Mean field approach

- Rotskoff, Vanden-Eijnden (2018). Parameters as interacting particles: long time convergence
and asymptotic error scaling of neural networks;

- Mei, Montanari, Nguyen (2018). A mean field view of the landscape of two-layer neural
networks;

- Chizat, Bach (2018). On the global convergence of gradient descent for over-parameterized
models using optimal transport;

- Sirignano, Spiliopoulos (2020). Mean field analysis of neural networks: A law of large numbers.
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Linear-nonlinear decomposition

Linear-nonlinear decomposition of a two-layer NN f: RY — R
f(x) = Ao(Bx +¢), xeRY,

where
B:RY - R", ccR’" and A:R" =R
for a NN with n < co neurons
and
B:RY — C(R9"), ceC®I") and A:CRI) =R
for an infinitely wide NN.

If o is positively one-homogeneous, parameters can be chosen on
the unit ball Bgo.1. In this case C(R*1) is replaced by C(Bga-1).
(E and Wojtowytsch, 2020)
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Linear-nonlinear decomposition and variation norm

Linear-nonlinear decomposition of an infinitely wide two-layer NN
f:RY - R
f(x) = Ao(Bx +¢), xeRY,

where
B:RY — C(Bgo+1), C€€C(Bgari) and A:C(Bga:i) — R,

That is, Ais a linear functional on C(Bps:1) and can be identified with
a Radon measure a € M(Bga.1). Then

Il 7, = inf{llally, : (x) = (o(Bx +¢), &), x € R%,
where (-, -) is the dual pairing between C(Bgad:1) and M(Bga+1).

(more details to follow)
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Monte-Carlo rates in variation norm spaces

Theorem (direct approximation; E, Ma and Wu, 2019)

Let i € Pp(RY) be a probability measure with p > 1 finite moments
and let f € Fy(RY). Then for any n € N there exists a two-layer NN
fn with n neurons such that

2]l 7
If = foll 2 oy < T :

and N
> lallbll <2|fll5, -

Cf. Barron’s theorem: ||f|| -, plays the role of C in the Barron class I'c.
Inverse approximation also holds (E, Ma and Wu, 2019).
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Contribution:
Vector-valued neural networks and variation norm spaces
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Learning in infinite-dimensional spaces

Reproducing kernel Hilbert/Banach spaces a.k.a. random feature models

- Micchelli, Pontil (2005). On learning vector-valued functions;

- Zhang, Zhang (2013). Vector-valued reproducing kernel Banach spaces with
applications to multi-task learning;

- Alvarez, Rosasco, Lawrence (2012). Kernels for vector-valued functions: A
review;

- Nelsen, Stuart (2020). The random feature model for input-output maps between
Banach spaces.

Apparently, no such results for variation norm spaces.
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Vector-valued two-layer neural networks — 1

Vector-valued two-layer NN f: X — )
f(x)=Ao(Bx+c), xei,

where
X, Y are Banach spaces with separable preduals,

o is the generalised RelLU function that we will define
using partially ordered spaces (vector lattices),

A, B and c are yet to be defined.
We will slightly abuse notation and write
f(x) = Ao(Bx), xe€ X,

where we have identified X with X x R and B with an operator (B, c) acting on
X xRas (x,a) — Bx + ac.

For inputs of the form (x, 1) the two formulas are the same.
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Vector lattices, a.k.a. Riesz spaces

Partial order * < “on a set S is a reflexive, antisymmetric and
transitive binary relation " < " S x S.
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Vector lattices, a.k.a. Riesz spaces

Partial order * < “on a set S is a reflexive, antisymmetric and
transitive binary relation " < " S x S.

Vector space X with partial order " < " called an ordered vector space
if
Yy — x+tz<y+z vV X,y,ze X,

X <
X<y = A<y V x,ye Xand A € R;.
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Vector lattices, a.k.a. Riesz spaces

Partial order * < “on a set S is a reflexive, antisymmetric and
transitive binary relation " < " S x S.

Vector space X with partial order " < " called an ordered vector space
if

X<y = x+z<y+z vV X,y,ze X,

X<y = A<y V x,ye Xand A € R;.

A vector lattice (or a Riesz space) is an ordered vector space X' with
well defined suprema and infima

Vx,ye X dxVyeX, xANyedk,;
XVO0=xy, (—X)y=x_, X=X —X_, |X|=x4+x_.
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Examples of vector lattices

[¢]

Sequence spaces °, 1 < p < oo

x>y <= x>y ieN,
)

o

Space of signed Radon measures M(Q
w=zv <= u(A)=v(A) YACQ,

[¢]

Lebesgue spaces £P, 1 < p <
f>g < f(x)=>9(x) ae.inQ

o

Space of continuous functions C(2), space of Lipschitz functions Lip(Q2)
f>2g < f(x)>29(x) ¥xe

O

Space of functions of bounded variation on an interval BV([0, 1])
f>g < f(-)—9g(-) isnon-decreasing;

[¢]

Space of linear operators between two partially ordered spaces L"(X; )

A> B <= Vx > 0itholds that Ax > Bx. 15/03



Vector-valued two-layer neural networks — 2

Vector-valued two-layer NN f: X — )
f(x) = Ao(Bx), xe X,

where
X, Y have separable preduals and ) is also a vector lattice,
o: Y — YV is the generalised ReLU function,

o(y):=y+ =y VvO0 inthe lattice sense,
B: X — C(B(x.y); V) maps
X — Lx(-) suchthat Lyx(K)= KX,
A: C(Bz(x.yy: V) — Y maps

() : o(K)da(K), whereac M(IB%E(XQ,)).
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Caveats — 1

The parameter space is B (x,y). To make sure it is compact, we
need to

o make sure that L(X'; V) is a dual space and
o use the weak™* topology.

Theorem (Ryan. Introduction to tensor products of Banach spaces. 2002)

Suppose that X and Y have separable preduals X° and Y° and that either
X or)° has the approximation property. Then the dual of the space of
nuclear operators N'(Y°; X¢) can be identified with the space of bounded
operators L(X;))

(N(% X)) ~ L(X; ).

Consequently, the unit ball B.x.y) is weakly* compact and metrisable.
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Caveats — 2

Since B (x,y) is equipped with the weak™ topology, we need to
make sure that

o the function Ly: B x.yy — Y such that L,(K) = Kx is weakly-*
continuous  — true if ) is equipped with the weak* topology;
o the nonlinearity o is weakly-* continuous
— turns out to be quite restrictive for the ReLU!
Examples:
4 Sequence spaces (P, p > 1; Lipschitz space Lip(Q);

X Lebesgue spaces L}, (unless y is atomic); space of linear
operators L'(X; )V) (except in special cases); space of Radon
measures M () (unless Q is discrete).
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Caveats — 3

In order to obtain convergence rates in Bochner spaces LP, we
need to metrise the weak* topology on the unit ball in ). This is
typically done using the following metric

0o _j |<7]I)y_z>|
- 1
d(y,z) = Z,-:1 2 14+, y—2)|

where {n;};cn is a countable dense system in the predual.

If {n;}ien are normalised, the following equivalent metric can be

used - _
— =1 , _
d*(y7z)_zi:12 ‘(nlay Z>|
It can be used to define a norm in the weak* completion of ).
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Vector-valued variation norm space

Definition (Vector-valued F; functions)

Let X', Y have separable preduals and let ) be such that lattice
operations are 1-Lipschitz with respect to the d, metric. We define
the space of Y-valued F; functions as follows

F1(X; D) = {f € Lipg: [|f| < oo},

where Lip, is the space of Lipschitz functions with respect to the d.
metric in ) that vanish at zero and

s, = ok lallag: 700 = [ alex(0) da(k) vx € 2.
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Monte-Carlo rates in vector-valued F; spaces

Theorem (direct approximation; YK 2021)

Let above assumptions be satisfied and let f € F1(X;)). Then for any
n € N there exists a two-layer neural network with n neurons

n
h(x) =) ai(Kix), xe€X,
where K; have finite rank and || Ki| ;. < 1, such that

o forany x € X
_ 2V2||fll g, x|l
X \/ﬁ ’

o ifu € Pp(X) and mp(p) < oo is its p-th moment, p > 1, then

d. (f(x), fa(x))

2V2 |[f|| 5, (mp(1))?
o .

If = fall s, <
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Conclusions

v/ Generalised variation norm spaces with ReLU activation to
networks with values in a Banach space;

v’ Proved inverse and direct approximation theorems, obtained
Monte-Carlo rates;

v/ Obtained results for generalised ReLU, but they hold for any
weakly-* continuous activation;

X Saw a limitation — weak* continuity of o often not fulfilled by
RelLU — |Is the use of weak™ topologies a technicality?

X More interesting architectures.
YK (2021). Two-layer neural networks with values in a Banach space. arXiv:2105.02095
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